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Abstract — The shape rumber of a curve is derived for two-dimensional non-intersecting closed curves that are
the boundury of simply conneuted regions, This description is independent of Lheir size. otientation and
position, but it depends on their shape. Each curve carries “within it” its own shape number, The ardur of the
shape number indicates the precision with which that number deseribes the shape of the curve, Foracurve,
the order of ils shape number is the length of the perimeler of a discrete shape’ (a closed curve formed by
vertical and horizental scgments, all of equal length) closely corresponding Lo the curve. A procedursis given
that deduces, without table look-up, string matching or correlations, the shape number of any order feran
arbitrary curve. To find out how close in shape two curves are, the degree of similarity between them is

intreduced ; di

issimilar regions will have a low degree of similarily, while anajogous shapes will huve o high

degree of similarity. Informally speaking, the degree of similarity between the shapes of two curves tells how
deep it is necessary 1o descend into a list of shapes, before being able to dillferentinte between the shape of

those two curves. Again, a procedure s given to compule it, without need for such list or grammatical parsing
or least square curve or arca fitting. The degres of similarity maps the universe of curves into a ree or
hierarchy of shapes. The distance between the shapes of any two curves, defined as the inverse ol their degree
of similaTity, is found to be an ultradisiance over this tree. The shape numbor is a deseription thal changes
with skewing, anisotropic dilation and mirror images, as the intuitive psychological concept of “shupe™
demands. Nevertheless, at the end of the paper a related Theory “B” of shapes is introduced that allows
anisolropic changes of seale, thus permitiing for instance a rectangle and a square 1o have the same B shape.
These definitions and procedurcs may facilitale a quanlitative study of shape,

Curve description
Form similarity
Image processing

Chain cocoding
Shape comparison

INTRODUCTION

The study of shape is an important part of the field of
Pattern Recognition.

As pointed oul by Lord Kclvin, a science begins to
emerge when it is possible 1¢ make measurements of
the phenomena that such science seeks to understand,
allowing quantitative comparison and mathematical
relations among them.

This paper gives a procedure to measure (ie. to
assign a number 10) the rescmblance between any two
shapes.

With the help of procedures like Lhis, a quantitative
study of shape may be possible.

Previous work on shape

Shape extraction is an active field. Sequential extrac-
tion of shape features* can be performed making only
one pass over the image. For global shape analysis,
several authors have used Freeman chains, medial axis
transforms, decomposition into primary convex sub-
sets, polar co-ordinates,'™ decompaosition at concave
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Shape code
Measure of shape difference

Silhoucties Shupe numbers

Binary picture

vertices ; decomposition by clustering, mirroring axes
) and stroke detectors. These and other methods are
reviewed by Pavlidis.'”

1. TIE SHAPE NUMBERS

1.1 What is a shape

A region is a simply connected portion of a plane
limited by a curve boundary. That is, no holes ; no self-
intersecting boundary. It is a closed boundary. A given
region has a size, a position, and an orientation in the
plane. This defines a fat region, which is uniquely
defined by the curve it has as boundary. This paper
deals with shapes of regions, but the shape numbers
used here can also be applicd Lo open curves. In
addition, Section 1V describes regions with holes.

A shape is what remains of a region after disregard-
ing its size, position and orientaticn in (he plane. That
is, two regions have the same shape if we can make
them coincide exactly by translation and rotation in
Lhe plane, in addition to a uniform change of scale (the
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x and y co-ordinates increase by the same factor),

A region and tts mirror images will not have the
same shape, in general

This definition coincides with the intuitive psy-
chological definition of “shape™.

If & notation is going to be used to represent the
shape of a region, it has to be independent of the
position, oricntation and size of such region. It should
be reproducible: a region, when translated, magnified
and rotated should still give the same description as
when untransformed. Two regions with different sha-
pes should produce different descriptions. Finally, the
shape number should be unique for a given region ; for
instance, it should not depend on an arbitrary starting
point or a particular co-ordinate system.

If the notation can be deduced exclusively from the
region, without comparison with a table of canonical
shapes or shape descriptors, for instance, then we can
expect savings in memory and computer time for the
procedure thal computes the shape description.

L2 Continuous and discrete shapes

A shape is discrete if the boundary of the region is
formed by segments of a square grid. Otherwise, the
shape is continuous.

E. BRIRIESCa and A. GuzMaN

.3 Matting a continuous shape into a discrete shape

A square grid may be overlaid on top of a con-
tinuous shape to obtain a discrete shape. The quanti-
zation of the shape is as follows: a square of the grid is
“black™ (inside the discrete shape) if more than 50% of
it is covered by the continuous shape; otherwise it is
“white™ or outside (Fig. 1). The size, orientation and
position of this grid will influence the resulting discrete
shape.

A discrete shape, obtained from a continuous shape
in the above manner, can not be a shape descriptor of
the continuocus shape, because it depends on the size
and orientation of the grid. This will be solved in
Section L.6.

Now, some shape descriptors will be given.

1.4 Eccemricity

The eccentricity (ratio of the major to minor axis,
Fig. 2) ol a region is a descriptor that depends only on
its shape.

The major axis of a region is the line joining the two
perimeter points furthest away from cach other. The
minor axis is perpendicular to the major axis, and of
length such that a box could be formed that just

\

b ™

Fig. 1. Continuous and discrete shapes, Continuous shape A gives rise to several discrete shapes B, C, D. Tf it

is desired to have a unigue discrete shape derived from A, then itis aecessary to spectfy the grid size (related to

the arder of the discrete shape), as well as its orientation and position with respect o the continuous curve A,

In this manner, for a given order , the discrete shapscorresponding to 4 will be unique. This is accomplished
in Section L6.
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Fig.2. Basic rectangle. {a) Minor axis of ¢. (b} Major axis of ¢,

(c) Region. () Basic rectangle of . The eccentricity e = bfa is

always greater than or equal to 1. It is a shape descriptor,
although not a good one.

encloses the region. This box is called the basic
rectangle (Fig. 2).

Occasionally, there will be more than one major axis
in a region. In that case, sclect that which gives the
shorter minor axis ; if necessary, add additional criteria
to make the choice of major axis a unique choice.

1.5 Freeman chain and its derivative

Freeman chain in four directions. For a given region
and a given square grid of fixed orientation and size,
the Freeman chain in four directions is the curve
obtained by walking clockwise on the grid {on its
“wires”) around and outside the sguares that are more
than half contained by the region (Fig. 3).

Derivative of Frezman Chains. It is the chain number
obtained by clock wise replacing each convex corner of
the Freeman chain by a 1, each straight corner by a 2,
and each concave corner by a 3, as Fig. 3 suggests. The
number obtained (“F” in Fig. 3) will be different if we
change he size or orientation of the grid. In the next
section a method appears that makes the “derivative of
Freeman chain” independent of these changes. This
new derivative will be called the shape number.

1.6 The shape numbers

This section tells how to obtain our proposed
description for the shape of shapes and regions. The
procedure to find the shape number of a region is as
follows:

1. A grid of arbitrary cell size is overlaid on top of
the region. A “black™ region is formed with ali the cells

D :223233333444441411222)28
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that fall 50 per cent or more inside the region.

2. The boundary of such a black region is the chain
sought after. This chain is denoted by its denvative
notation {g.v.). We collect these numbers travelling
clockwise. Refer to Fig. 4.

Observe that there are several strings of digits 1, 2
and 3 corresponding to the above chain, depending on
the starting point (see Fig. 4):

1213131213113 (A)
21311312131131  (B)
13113121311312  (C)
3113121303121 (D)
1131213131213 (E})
13121311312131  (F)
3121313121311 (G)
1213113121313 (H)

2131312131131 (I}
131132131312 N

331203113121 (K)
11312131131213 (L)
1312131312131 (M)
3213113121311 (N)

Observe also that one of them is 2 minimum, when
regarded as a number in base 3: (E} in the above
example.

3. Select the chain that is minimum as the chain that
represenis the region. In the example, it is
11312131131213. Observe that the minimum chain
always starts with a 1, since every discrete shape
contains at least four 1's.

What size of grid? What orientation? Unless a
procedure is given that normalizes these questions and
provides unique answers, a region will have several
shape numbers.

The adopted posture is that the orientation of the
grid will be normalized, but its size will be a parameter
that will allow us to vary the precision of the shape
number. Nevertheless, although the size of the cell of
the grid varies according to the precision, the number
of segments of the grid (sides of each cell) into which
the regien will be mapped is no longer at user’s will, but

/
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F: 12131221312 2221332122313

Fig.3. Chains. A: theregion. B: The gtid. C: The Freeman chain infour directions. 5 Its chain nomber. E:
The four directions of (B} used 1o code (C)into (D). F: the derivative of (C). G : The three types of corners used
to code (C) inte (F).
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Fig. 4. Shape number. (A) the continuous shape. (C) The discrele shape. (£} The shape number.
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Fig. 5. All the shapes of orders 6, 8 and 10, {4) Of order 6. (8) OF order 8. (C) O order 10.
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it is dictated by the precision he specifies.

The orientation. of the grid is not arbitrary, but it is
madeto coincide with the major axis of the region. The
reason is clear : each region should carry along with it
its own direction of the grid. In this manner, if the
region rotates, the grid rotates the same amount and a
code is obtained invariant under rotations.

Procedureto achieve a unique shape number. Given a
region surrounded by its basic rectangle, a grid of a
given (fixed) size could be placed on top of the
rectangle, in order to extract the unique shape number
of the region. Instead, the user is allowed to tell how
many digits he wants his shape number to contain.
That is known as the order of the shape number.

It is clear that the same shape gives rise to several
sbape numbers. But, given n, the shape number of
order n of that shape is unique.

Shortly a procedure will be shown to find the shape
number of order n of a region, for a given n. Before that,
however, the families of discrete closed shapes of
several orders are presenied.

All the shapes of order 4. These are all the regions
that can be formed with four sticks of the same size,
when they can be placed only collinearly or at 90
degress with respect to each other.

There is only one closed shape of order 4, the square ;
1111,

This is the most primitive or fundamental shape.
Imagine you are looking at things very far away ; you

.
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can not really differentiate much. All objects would
look round {square, in this paper) and equal

All the shapes of order 5. No shape number of odd
order represents a closed figure. For a closed figure,

number of corners = number of sticks = order of
figure.

This paper does not deal with open figures. Not all
ternary numbers with an even number of digits are
shape numbers. Most of them do not close.

All the shapes of order 8, 10 and 12. See Figs. S and 6.

2 USING THE SHAPE NUMBERS FOR SHAPE
DESCRIFTIONS

2.1 The order of a shape number

The order of a shape number is the number of
ternary digits that the shape number contains. It is
always even, because the boundary is closed.

22 How to find the shape number of order n of a
cohtintious shape

The procedure is as follows:

1. Find the basic rectangle of the region.

2. From the family of discrete shapes of order a, find
the rectangle of order n with eccentricity closest to that
of the region. (This is easy. For instance, for n=22, the
tectangles of order 22 - those with perimeter equal to
22-arcofsides 6 by 5, 7by4,8by 3,9 by 2and 10by 1.)
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Fig 6. All the shapes of order 12.
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F:N2312221312131 2213132

Fig. 7. Finding the shape number of order 22. The continuous (A)is encased in its basic rectangle (B). Given

n=22, a square grid of appropriate size (see text) is centered {C) on the basic rectangle. A discrete shape (D) is

obtained, The “derivative notation™ () is found. Traveling clockwise, the chain with the minimum absolute
value (F) is the shape number of order 22 digits. (D) has 22 sides, as well as 22 corners.

In practice, it is belter to approximate the longer
side of the rectangle instead of the eccentricity. If
€ = eccentricity, one ¢an deduce that the longer side is
b = (nf2}{e/1 + ¢). Sclect a rectangle with longest side
closest to that quantity. Lay this rectangle, centered, so
as to cover the region, and make a grid of @ by b square
celis (“C”, in Fig. 7).

3. Make black (=1) all those cells falling more than
50% inside the region; leave white (0, outside) all
others.

The boundary of this black region, expressed in the
derivative notation, is the desired shape number.

Remember to write down the digits of the chain
traveling clockwise, and selecting as the starting point
the corner of type 1 that makes the chain number the
smallest of the n possiblechain numbers. An example is
given in Fig. 7.

Notice that the resulting shape number is indeed of
order n. This will not be true if the figure has
depressions (concavities) in its boundary. The depres-
sion in the boundary makes the order bigger. Bach
depression of depth k increases the order of the shape
by 2k.

When, looking for a shape number of order n, if a
number of order n+ 2d results, try next to look for a
shape number of order n—24. Due to the presence of
the holes, the shape number #— 2d will be increased by
an amount cqual to the “hole excess™ 24, thus yielding
the desired order n. This relation holds only approx-

— L

pwid b I

imately, since the size of the holes of order n is smaller
than those of order n—2d. Thus, in practice, try the
basic rectangles or order n—2d, n—2d+2, n—2d+ 4,
-++yn—2, and when we obtain a shape number of order
n, that is it. See also Section 2.3,

Properties of the shape number. It is insensitive to
orientation of the region, to its position, to its size, and
to the origin of the chain. It is therefore appropriate to
think that the shape number of a region indeed
describes its shape (cf. Section 1.1).

Also, since it is possible to compute the shape
number of a region without reference to a table of
sorted shapes (canonical shapes), we avoid making
correlations or comparisons of shapes or of strings.
That is, the shape number of a region can be deduced
solely from the region.

In addition, the precision of the resulting shape
number can be varied. This is done with the order of
the shape number ; that is, the size of the sticks (or of
the grid) that we use to find it.

2.3 Shapes without shape numbers

A shape with a thin isthmus (narrower than the size
of the grid) will not yield one shape number, since the
procedure of Section 2.2 will split the continuous shape
into several discrete shapes (Part 11 of Fig. 8). Some
shapes with depressions in their boundaries may not
havea shape number, This is discussed in Section 3.3d.

=

II

Fig. 8. Depressions and degenerate shapes. 1. A depression of depth  increases the shape number by 2d. I1.
Degenerate regions split the discrete shape but do not have a shape number.
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3 USING THE SHAPE NUMBERS TQ MEASURE
SHAPE SIMILARITY

31 The degree of similarity between two shapes

The shape number of a region enables us to find
instances of a given shape, even when distorted by
enlargement or rotation. It answers the questions
“Have these two regions the same shape?”, up to an
arder n.

In practice, however, a shape rarely repeats itself,
due to noise and the allowable variations (for instancs,
ten silhouettes of apples have similar but not identical
shapes). The relevant questions to answer are “How
much different are these two forms?”, “How much do
these two shapes resemble each other?”, “Is region A
closer in shape to B, or to C?”. This section gives a
procedure to quantitatively answer these questions.

When the shapes of two regions A and B are
compared, we can notice that the shape of order 4 of A,
s4(A),is equal to 1111 (the only shape of order 4), and is
therefore equal to s,(B).

Also s5(4) = 34(B); probably sg(d4) = s4(B). It is
likely that their first few shape numbers be identical.
The reason is that the discrete shapes are coarse and
not varied at low orders, where the “resolution” is low.,

Nevertheless, most likely s;6(A) # 5,50(B), also 545
(A) = 544(B), etc. This is expected, because, due to the
finer precision at higher orders, there exists a large
variety of shapes, thus the discrimination between A
and B is more demanding.

Of course, if 4 and B were very similar (but not
identical), one might need to go up to say 170 to find

9
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that s,,9(A) # 5;70{B). On the other hand, if they are
visibly different (not alike at ail), already at order 10 we
will find 5,5(A) # s5,4(B).

Thus, as we increase the order n of the two shape
numbers 5,{4) and s,(B), they begin equal but at some
order they become different. How long they remain
equal gives us an idea of the similarity between the
shapes of 4 and B.

Degree of similarity k between the shapes of two
regtons A4 and B: it is the largest order for which their
shape numbers still coincide.

That is, it is the largest m for which 5,(A) = s5.(B),
but s,,(A) # s5,.(B) for all i greater than C.

That is, we have 5,(4) = 5,(B), s4(A4) = 55(B), 55(A)
= 5g(B),- .-, 5i{4) = 5{B), 5 42(A) # S12(B), Sy44(A)
# SpealB), ... .

If A and B are regions with degree k of similarity we
write a 2 b.

Example. For the figures of Fig. 9 we have for A to
F:

si{A)=sy(B) = - - = 5,(F) = L111;

seld) = 55(B) = + -+ = s¢(F) = 112112;

sa(A) = s5(D) = s4(E) = 12121212

sa(B) = 11212113;  54(C) = s4(F) = 11221122;
Sio(A) = 1212212122; 5,4(B) = 1121221123;
$10(C) = 1122113113
s10(D) = s;o(E) = 1131212122;

$10(F) = 1122121213; 5,,(D) = 113113121213;
s12(E) = 113121221213,

q _
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Fig. 9. Degree of similarity. (4) Regions to be analyzed. (B) Similarity tree for (A). {C) Similarity mafrix for
regions (A). The shapes form a hierarchy, a tree with root 2t degree = 4.



Therefore, A and B have a degree of similarity equal
to 6: A=gB. Also, A, E; Ex B D | ,E; ete.

This is represented in the figure both as a similarity
tree and as a similarity matrix.

The similarity matrix is symmetrical; in fact, it is
easily proved that, for arbitrary regions A and B,

(1) (Thm.) The relation “4 and B have degree k of
similarity” (for a fixed k) is not an equivalence
relation.

{2) {Thim.) The relation “A and B have degree of
similarity of at least &~ (for a fixed k) is an
equivalence relation.

In fact, the equivalence classes of (2) for k= L0 are
nine, since there are only nine discrete shapes of order
10.

Informally speaking, the size (power) of ihe
magnifying lens that barely confuses two regions gives
the degree of similarity between such regions.

The comparison procedure could be visualized as
follows: A number (a shape number of high order) is
associated (o each one of two regions. If the numbers
are equal, the regions have identical shape. If not,
another pair of numbers (shape numbers of the next
lower order) is deduced, and so on until we find that
the two numbers coincide. The number of stages
needed is an indication of the dissemblance of the two
shapes.

3.2 The distance berween two shapes
Distance. (definition) The distance between two
shapes 4 and B is defined to be the inverse of their
degree of similarity. d(4, B) £ 1/k.
Then d is an ultradistance, obeying
d(A4,A)=0
d(A,B) =2 0;
d(A,B)=0 ifand only if 4 =B

d{4,C) < Sup[d(4, B), d(B, C)].

)]

)
3)

3.3 Comments on this theory of shapes

a. No parsing is necessary. To find the degree of
similarity between A and B, their shape numbers are
compared for equality. Two shape numbers of different
order are incommensurable. Two shape numbers of
the same order are either equal or different. If different,
that is it. There is no need 1o compare “how close in
shape they are™. String matching™ is not needed.

To find out the degree of similarity, a binary search
is used, First see whether the shape numbers at order §
are equal or not. Then compare the shape numbers al
the highest required accuracy (say, 100). Then at the
middle. Then at the middle of the remaining valid haif.
And so on.

b. Intuitively satisfying. Shape numbers are not
invariant under reflexions (mirror images), skewing, or
unequal expansion along the X and Y axes. These
transformations alter what could be considered the
intuilive shape of a figure. At the end of the paper a
Theory “B™ of shapes is presented, where the last

E. Briniesca and A. Guzman

transformation is allowed, i.e. a circle and an elipse
have the same Bshape number.

€. Occasional loop in the similarity tree. Due to noise
or the 50 per cent requirement for quantization, and at
low orders, a transitory divergence and then con-
vergence in the shapes of two regions is sometimes
observed, v.gr.,

sa{A) = s9(B)
S10(A) # 510(B)
512(4) = $,2(B)
514(A) # 514(B)
s16(A) # 316(B)

1.c. they were already different at order 10, but they are
again equal at order 12 (however, only to separate
soon forever). This still gives a unique number for the
shape of a region, but makes the definition of degree of
similarity less attractive, and the procedure to find it,
unreliable. Only loops of size 2 (such as the example
given} have been found, infrequently. These loops
disappear in theory B.

d. Non existent shape numbers. Shape number of
order n may occasionally not exist for a given figure,
due for instance to symmetrical holes of type 1 in Fig. 8.
This does not bother the similarity procedure, but it is
2 nuisance not to have that shape number.

&. Quantization of the eccentricity. The basic rec-
tangles of order 12 have eccentricities equal to 1 (the
square of 3 by 3), 2 (the rectangle of 4 by 2) and § (the
rectangle of 5 by 1). For an object of eccentricity 1.6,
one of these has 1o be used. An error is going 1o be
committed in any case. There seems to be no way out of
this.

A theory is now presented that has none of these
problems.

3.4 Theory “B" for Shape descriprion

To obtain this new theory, the current theory
undergoes some changes:

1. Force the eccentricity of any region to be equal to
one, by performing an unequal dilation of its axes,
The only discrete Bshapes that now exist are those
obtained from squares. All the rectangles have
disappeared.

2. Do not go into depressions (1 in Fig. 8) with width
stualler than the size of the side of the cefl of the grid.
This aveids degenerate shapes.

That is, if a region is “scraiched” by thin lines
(thinner than the size of the grid) that belong to the
background ignore them (act as if they were not
there) or clse, if they cannot be ignored, this theory
“B” says that the size of the grid is inappropriate to
describe such region, and that its Bshape does not
exist at this order. Higher resolution is needed.

3. Let the depressions where the sticks do go in
(because they are wider than Part 1 of Fig, 8)
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generale Bshape numbers having a number of
{ternary) digits larger than the expected order. That
is, do not correct the anomaly that these depre-
ssions cause. The perimeter of the Bshapes no
longer tells its order.

4, Eliminate the orders that are not powers of two.
The only valid orders for Bshape numbers are 4, 8,
16, 32, ... . These numbers still indicate the per-
imeter of the basic square of the region.

The procedure is the following:

How to find the Bshape number of order n

1. Find the basic reciangle of the region and convert it
to a square. Declare that the Bshape number does
not exist if the region has necks (isthums) or
depressions (channels, fjords) narrower than 4/n or
22 —H.

2. Make a grid by dividing the side of the basic square
into n/4 equal parts.

3. Mark with a 1 each cell of the grid of step 2 that is
more than 50 per cent contained in the region. The
collection of grid squares containing a 1 form a
discrete Bshape.

4. Find the shape number of the discrete Bshape of
step 3, and give that as answer {even if it has more
than n ternary digits).

The order n of a Bshape number is four times the
number of parts into which the side of the basic square

|

'

9

[ ascoer

N

1%

was divided. It is also the perimeter (measured by the
number of sticks) of the basic square.

It is no longer the perimeter of the discrete Bshape,
nor the number of ternary digits of the Bshape number.

Given a shape, it is easy to derive its Bshape
number. An example is given in Fig. 11.

The degree of similarity between the Bshapes of two
regions is obtained as before. No change in the
definition.

Pownwards constructability. Given the Bshape num-
ber of order n of a region, the Bshape number of order
n/2 can be deduced from it, by regrouping appropriate
sets of 4 neighboring cells into a cell for the lower
order. Therefore, if iwo regions have the same Bshape
number of order n, they will continue to have egual
Bshape numbers of smaller order, until they cease to
exist. This gets rid of problem 3.3c of the former theory.

U pwards existence. If the Bshape number of order n
of a region exists, the existence of numbers for higher
order is guaranteed, since the channels or narrow parts
that could not split the shape al order r, will also be
unable to split it at higher orders. This dsfeats problem
3.3d of the former theory.

Quantization of the eccentricity. Finally, problem
3.3e of the former theory is not present in theory B
because all eccentricities are now equal to 1.

Some example of similarfity comparison using
theory B are given in Fig. 10

DEGREE
L)
ABCD
\
ABCD
1] E

1

Fig. 10. Similarity tree for the Bshapes of Regions A 1o F. The tree shows that the degree of similarity belween
B and E i3 8, but between B and C is 16.
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Fig. 11. Example of Bshapes and their similarity. The arrows on the figures signal the beginning of the string
of order 32 or 64.

Disadvantage of theory “B". Squeezing along one
axis is now a valid (Bshape preserving) transfor-
mation. Thus, either the application does not carc
abount the eccentricity or aspect ratio, or this has to be
carried as another parameter, in addition to the
Bshape number,

Also, more care needs to be exercised now when
selecting the major and minor axis, to avoid noise
perturbations, It may pay to use the rectangle sugges-
ted in® :

4. THE SHAPE NUMBERS OF SHAPES
WITH HOLES

It is possible to assign shape numbers for regions
with holes, and to use them for shape comparison and
shape similarity measurement. The idea is to use the
basic rectangle of the outer boundary for discretization
of all the boundaries (both the culer and the inner
boundaries). Using the shortest possible vertical or
horizontal cuts, join the boundaries among them.
Each cut reduces by one the number of boundaries.
Finally, a single boundary is found. Then such a
boundary can be described by an ordinary shape
number. Such a shape nomber is then associated with
the original region.

Nolice that no other shape with holes could also be
the owner of that shape number, since the new number

has “touching edges” (those running along the cut).

And since the set of cuts is unique (cf discussion

below), the resulting shape pumber is also unique. See

Fig. 13.

The procedure is detailed now for Bshapes. To find
the Bshape number of order n of a region with holes,
proceed as foltows:

1. Find the Bshape number of order n of the outer
boundary.

2. Using the grid defined in (1), find the discrete
Bshapes of the inner boundaries.

3. Let a “cut™ be a sequence of purely vertical or
purely horizontal segments of the grid. Find the
minimum spanning tree of cuts that connects the
boundaries (This tree can be found as follows: (a)
find the two boundaries closest to each other; that
is, the two boundaries with the shortest cut joining
them. That cut belongs to the iree, and these two
boundaries are now joined by such a cut. (b) Now,
find the boundary closest to that new boundary.
That defines another cut. This new cut belongs to
the tree, and this new boundary is now joined {by
such a cut) to the former collection of boundaries.
(Now we have three boundaries joined by two cuts).
{¢) Keep iterating (b), each time adding a new
boundary (the closest one) to the collection of
boundaries, and its corresponding cut to the mini-



How to describe pure form and how to measure differences in shapes
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Fig. 13. Shapes with holes. To find the Bshape number of a discrete shape (A) with a hole, cut a channe
across the region, 5o a5 to have a simply connected region (B); then return the Bshape of (B) as the answer
The text provides more explanation.
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mum spanning tree of cuts. When all boundaries
are joined, stop. . -
The result is a simply connected boundary.
4. Find the Bshape of this simply connected boun-
dary, and give that as answer.

If there are two cuts of equal length, use the cut that
minimizes the resulting Bshape number. This favors
cuts near the starting point of the Bshape number.

With this tic-breaking rule, the Bshape number is
unique.

CONCLUSIONS

For cach two-dimensional region, a shape number
can be derived. This number depends exclusively on
the form of the region.

These shape numbers can be found without table
look-up or correlation or string tnatching.

The shape numbers can be of different order; high
orders are more accurate for shape description. Infor-
mally, the number of ternary digits of a shape number
will tell its order.

The degree of similarity between two regions, in-
troduced in this paper, permits to find out how close in
shape two regions are. Two regions with shapes that
look alike wili have a high degree of similarity.

Informally speaking, the degree of similarity be-
tween the shapes of two regions is the highest optical
resolution (power of the magnifying lens) that still
confuses them,

The distance between two shapes is defined and it is
found to be an vltradistance or ultrametric,

The Bshape numbers allow additional advantages
and overcome some problems of the (ordinary) shape
numbers.

The shape numbers of figures with holes are defined.

Suggestion for further work : apply the shape num-
bets 1o three-dimensional surfaces enclosing a volume.
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